Data Classification and Demand Prediction Methods Based on Semi-Supervised Agricultural Machinery Spare Parts Data
نویسندگان
چکیده
Because of the continuous improvement technology, mechanization has emerged in various fields. Due to different suitable seasons for growth agricultural plants, faces problems from other industries. That is, machinery and equipment may be used frequently a period time, or idle long time. This leads aging no longer becoming regular, maintenance time spare parts is not fixed, number stored warehouse cannot too large occupy funds, small meet needs, so prediction become particularly important. lack information, difficulty labeling, imbalance positive negative sample classification, this paper semi-supervised learning algorithm solve problem data classification. In order forecast demand machinery, compared IPSO-BP neural network BP algorithm. It was found that error between predicted value actual met accuracy requirements.
منابع مشابه
Detecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملdata mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولSemi-Supervised Classification on Evolutionary Data
In this paper, we consider semi-supervised classification on evolutionary data, where the distribution of the data and the underlying concept that we aim to learn change over time due to shortterm noises and long-term drifting, making a single aggregated classifier inapplicable for long-term classification. The drift is smooth if we take a localized view over the time dimension, which enables u...
متن کاملAccurate Semi-supervised Classification for Graph Data
Most machine learning algorithms require labeled instances as training data; however, not all instances are equally easy to obtain labels for. For example, the best-known papers and/or websites would be easier for a domain expert to label. We propose a new PageRank-style method for performing semi-supervised learning by propagating labels from labeled seed instances to unlabeled instances in a ...
متن کاملSemi - supervised Learning Methods for Data Augmentation
The original goal of this project was to investigate the extent to which data augmentation schemes based on semi-supervised learning algorithms can improve classification accuracy in supervised learning problems. The objectives included determining the appropriate algorithms, customising them for the purposes of this project and providing their Matlab implementations. These algorithms were to b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Agriculture
سال: 2022
ISSN: ['2077-0472']
DOI: https://doi.org/10.3390/agriculture13010049